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Abstract

The locus problems discussed in this paper are inspired by college entrance exam practice
problems from China [([8]). Finding the algebraic equations for the locus that depends on other
curves may not be a simple task. However, it will become more intuitive to students if we use a
dynamic geometry software (DGS) to trace graphically what the locus may look like first before
verifying the equation analytically with a computer algebra system (CAS). In addition to finding
the locus for a given problem, we shall generate families of new parametric locus curves from the
existing closed curve.

In many places, we first highlight essential algebraic manipulation skills before we explore
various scenarios when technological tools are available to learners. The activities described in
this paper are accessible to student who have knowledge of parametric equations.

1 Introduction

The problems discussed in this paper are extracted from the article [1]. Finding the equation of a

curve defined by the locus of a moving point has been popular and often asked in Gaokao (a college

entrance exam) in China. There have been several exploratory activities!(se€e [5] [7] and [9]) derived

from Chinese college entrance exam practice problems ([8]). In this paper, we explore the following
Main Problem. If we are given a fixed point A and lines passing through this fixed point to in-

tersect a closed curve at two respective points on the curve, s&yand D respectively. The locus

E, we are interested in finding, is lying onC' D and satisfiesE D = 5(7—15, where s is a given real

number. In addition, we will explore a new family of interesting graphs by varying the parame-

ter S.

Activities explored in this paper can be beneficial to readers who have knowledge in parametric
equations. We start with a practice problem originated from ([8]) to initiate our discussions. We
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demonstrate how a problem can be solved by hand first and also demonstrate those crucial algebraic
manipulation skills that are required by high school students from China. In addition to solving simple
cases by hand, we typically construct a potential solution geometrically using the trace feature of a
DGS such ad ]2]. Secondly, we seek for a symbolic answer if possible from a symbolic geometry
software such as [3]. Finally, we use a CAS (suchlas [6]) to verify that our analytic solutions are
identical to those obtained by using [3]. As we shall see from our discussions, a simple drilled type
of examination problem can be turned into many interesting projects for undergraduate students to
discover many more unexpected mathematics.

2 The Locus Based On Lines Passing Through A Fixed Point

In the section 2.1, we start with the original problem from [8], which has been modified slightly for a
more general setting (see Example 1). Subsequently in the section 2.2, we use technological tools to
extend the scenario from a circle to an ellipse. We shall see that knowing the Vieta’s Theorem, about
how the sum of two roots is related to the coefficients of a quadratic equation, is needed when finding
a locus analytically.

2.1 Finding the Locus when the closed curve is a circle
We consider the following problem that is being modified from ([8]).

Example 1 We are given a fixed circle in black and a fixed paitin the interior of the circle
(r —a)*+ (y — b)? = r? (see Figure 1(a)). A line passes throughand intersects the circle &t and
D respectively, and the poif is the midpoint of”'D. Find the locusE.

Figure 1(b). Locus, circle

Figure 1(a). Locus and lines  and perpendicular
passing through a fixed point

We let the fixed pointA be (xq, 30), and let the line pass through and intersect the circle &t
and D respectively (see Figure 1(a)). We laliel= (x,y) as the midpoint of2' D. If we denote the
center for the circle to b® = (a, b), then using the fact of

—_— —
AE -OF =0,
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(see Figure 1(b)), we see
(z —zo)(z —a) + (y —vo) (y — ) = 0. D
The equation|1 can be reduced to the following:

2 2
a—+ xo b+ yo 1, 1 1, 1 1, 1,
- — e iy - -
(x 5 ) + (y 5 ) 1% 2ax0+4 5 y0+4x0+4y0,

which shows that the locus indeed is a circle.

Exploratory Activity. Suppose now we ask the scenario of finding the locu& afatisfying
ED = sC—>D, wheres € (0,1), then the problem becomes more complicated, which may not be
suitable as an exam question. However, it is a perfect example for students to explore with technolog-
ical tools. Precisely, suppogé D are two points on a circle, say + v = r2, and the fixed point
A = (ug,vp) is not the center of the circle. We Iét be the point on the lin€'D passing through
A, we want to find the locus of = (z,y) satisfying]ET)> = s(J—)D, wheres € (0,1). We note that
the parametric solution for the locus can be obtained from Geometry Expressions [3] after proper
geometric constructions, which we show below: (The exploration template can be fol8&#].)n

—2 (—wg + sin(t) |r]) (ug sin(t) |r| — vo cos(t) |r])
X t =(1- - t
(15,8, 0, v0) = (1 =) —r2 — u? — v + 2ug sin(t) |r| + 2ug cos(t) |r| cos(?) I
+scos(t) |r|
2(— t in(t - t
V(g ) = (1= 5) (2ot ) (oSl vl el 1) i
—r2 — u? — v2 + 2vg sin(t) |r| + 2ug cos(t) |r|

+ssin(t) |r]

Next we shall show how this formula is derived analytically, which we provide the corresponding
algebraic details in [S1].

Step 1. We labelC = (rcost,rsint), D = (z1,11), and E as(zx,y), and observe fronDE —
—
sCD, wheres € (0,1), that

r—x1 = s(x;—rcost)
r—rscost = x1— S
= x1(1—39),
y—rssint = y; — sy;
= y(l—ys).

Step 2.Next we note thaD = (x4, ;) lies on the line equatiodC' of
rsint — vy
Y — vy = (—) (x — ug) -

rcost — ug

Since the lineAC passes through the fixed poiAt= (ug, vo), We see

rsint — vy
y1—vo = |——— | (21— o),

rcost — ug
rsint — vy
Y1 = v+ (—) (21 — up) -
rcost — ug
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Step 3. Now, since the linedC intersects the circle of* + y* = r2, we rewrite the equation of
the circle by using the line equatiot”’ as follows:

. 2
rsint — v
2+ (vo + (—0> (x — uo)) =72
rcost — ug
rsint — v

We labelk = ———— and rearrange the quadratic equation as follows:
rcost — ug

=

kng — 2k%upx + k2a? — 2kugvg + 2kver — 1% + vg W -
(1 + k2) a? — (2k2u0 - 2]{700) T+ (kz?l% — 2kugug — r? + U%) = 0.

(2)

Step 4.We solve the quadratic equation involvimgand notice thabothzq, r cost are two roots
of the quadratic equatiod above, thus

2]€2U0 — 2]{?’110
r1+rcost = xR
2k2u0 — 2]’6‘?}0

I, = W — rcost.

Step 5.We writez by usingz; and substitute this into — rscost = z; (1 — s) to obtain

2]§2U0 — 2]€U0

x(r,s,t,ug, v = rscost+
( 0, Vo) ( 1+ k2

—Tcost> (1—s)

. 2 .
rsint — vy rsint — vy
g (2RI T g, —o (22RO,
rcost — ug rcost — U
= rscost+ : 5 —rcost | (1—2s)
(rsmt—vo>
_l’_ -
T Cost — Uy
2 (rsint — vo)* ug — 2 (rsint — t—
— rscoat+ (rsint — vg)” ug (;“Sln "UO)(TCOQS UO)UO—Tcost (1—s)
(rcost —ug)” + (rsint — vy)
2 int — int — — t—
D (rsint — wvp) ((rsin 2’1)0)U0. 2(7“COS .UO)UO)Q—Tcost (1— )
r2cos?t — 2rugcost + ug + r?sin“t — 2rvgsint + vg
2 int — int — t
= rscost+ 2(7“311;1 21}0) (ruo sin WOCOS,> —rcost | (1 —s)
T4 4+ uf + vg — 2rug cost — 2rvgsint

Step 6.We findy, and expresg accordingly: We substitute, into ¢, = v+ <%) (r1 — up)
to gety; as follows:

L sint — vy 2k%uy — 2kvg .
=0 —rcost —ug | .
4 0 rcost — up 1+ k2 0

Next we substitute, into

y—rssint = y; — sy
= y1(1_5)7
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to gety as follows:

int — 2k%ug — 2k
y(r, s, t,ug,vg) = rssint + (U0+ (:S:;t-;ﬁ) < ,llLO+k2 bl —rcost—u0>) (I1—35).

We have used [6] (see [S1]) to verify that, when setting 0, indeed the solution obtained from
Geometry Expressions|[8X (r, s, t, ug, vo), Y (1, s, t, ug, vo)] IS the same as:(, s, t, ug, vo), y(r, S, t, ug, vg)]-
We show some screen shots of the locus in red, with respective valugsnothe Figures 2(a)-(c)
when using([3] (see [S2]).

Figure 2(a) Locus and Figure 2(c) Locus and
s =025 Figure 2(b) Locus and = 0.9 s =0.95

Remarks:

1. We have restricted the fixed poirt to be in the interior of the circlez? + 2 = r2, in our
earlier discussion. With a DGS (such &5 [3]), it is easy to explore scenarios when thelpoint
is outside of a circle. We provide such case in the following screen shot: See Figure 3(a), when
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A = (1.598024, 0.6045678) andr = 2.

Z1= ~(1.6019543,-2.2343767)

Figure 3(a).A is outside the Figure 3(b).A is outside the circle and
circle ands = 0.25 s=1.43

2. Also, we have restricteglin (0, 1). However, it is easy to see what the locus will look like when
s > 1. For example, we obtain something interesting if werset 2, s = 1.43, and the fixed
point (ug, v9) = (1.6019543, —2.2343767), see Figure 3(b).

2.2 Exploration with a DGS for the case of an ellipse

Next, we naturally replace the circle? + 3? = r2, with an ellipse. We discuss the locus when the
— —
ratios = % in ED = sCD first in the following Example 2 before exploring other scenarios:

Example 2 We are given a fixed ellipse in blue and the fixed pdim in the interior of the ellipse. A
line passes througH and intersects the ellipse atand D respectively. If the point is the midpoint
of CD. Then find the locus aof ..

Without loss of generality, we consider the case when the ellipse is in the standard fg}mr of
z—j = 1. We let the line pass through the fixed poiht= (ug, v9) and intersect the ellipse &tand D
respectively. In addition, we assur@&) is not a vertical line perpendicular to theaxis. If we let the
slopeC'D to bek, then the line equation af D is y — ug = k(x — vp). If we write C' = (x4, y;) and
D = (z3,y2), then we use the technique difference of squaresto find the equation of the locus.
SinceC, D are points on the ellipse, we have

2 2
Ty Y

2te = b ©)
2 2

Lo Yy

?—Fﬁ = 1. (4)
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We subtractf4]) from (3 and see

(1 —x2) (w1 +22) (y1 — v2) ()1 + 42)
a? - b?
_ 12
. Y b* (w1 + x9)
Tz —r  d (g1t )
—p?
R )
a® (y1+y2)
If we denote the midpoinE’ as (X,Y) thenk = *b X . Since the midpointZ satisfies the line
equation@, which is passing through the fixed pouﬁht we seeY — yp = ;—‘fé(X — x9). Hence,
2,2 2,,2
we haver®Y (Y —vg) = —0*X (X —up) ora®(Y — %2)* +0*(X — %)% = MOTM), which yields

the followings:

Y -2 (X—9)? g+
b2 a? 4a2p?2

(v -3 | (X —uy

2 2
a?vd +b*ud  a*vd + brul
4a? 4b?

a ’U2 u2
Therefore, the locug’ is an ellipse centered é% ”0) whose major and minor lengths a@

2b

and —””20;1”“) respectively. We remark that when the polis the midpoint ofC D, finding the
locus of /' is still manageable when calculated by hand. However, we shall see next that the problem
becomes much more challenging whens not the midpoint.

Exploratory Activities: Suppose we would like to find the locis= (X, Y') so thatO'E = s@,
wheres € (0,1). We invite readers to apply the algebraic techniques, which we used for the circle
case, to derive the equation of the locus analogously in this case. Consequently, the derived equation
of the locus should be identical to the one obtained by Geometry Expressions [3], which we show
here:

1. 2 (vo — sm( ) |b|> (—wocos(t) lal + uosint) |b]) cos(t) |a scos(t) |a
X=(1-5) ( LU 110 N 2ug cos(t) |al N 20 sin(t) ]b\) (@) lal | =+ (#)la
a? a? b?
(1 2 (—ug + COS( ) |a|) (—vo cos(t) |a| + ug sin(Z) [b]) — sin ssin
Y =(1-5s) ( u vo | 2u cos(t) |al L 20 sin(t) \b|) () 10] | + ssin(t) [b|
a? a? b?
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We use the following screen shots to show the locus in red wher?.3,0.75, and0.8 respectively
in Figures 4(a)-(c).

DA

Figure 4(a). Locus, ellipse anBligure 4(b). Locus, ellipse anérigure 4(c). Locus, ellipse and
s=0.3 s =0.75 s=0.8

We provide the DGS interactive file in [S3] to allow users to explore if we set the fixed doint
outside the given ellipse or> 1.

3 Other Closed Curves When The Fixed Point Is At The Origin

In this section, we discuss a scenario with specific constraints:

1. When the fixed point is at the origin. [It is a much more algebraic intensive problem if we let
the fixed point4 to be an arbitrary point. To simplify the problem, we set the fixed point to be
at the origin.]

2. The concerned closed curve posbeth the polar (or parametric) form and the implicit form

Now we replace the ellipse by a cardioid (See Figure 5). Here is the set up of the problém: If
and B are two points on the cardioid and the A& passes through the fixed poiht= (0, 0). Find
the locusM = (z,y) that satisfieB M = sﬂ, wheres € (0,1).

We assume the closed curves, considered in this section, gostbethe polar (or parametric)
form and the implicit form off (z,y) = 0. The need of an implicit form for the given curve will be
clear later. We shall explore how we use the Vieta’s Theorem when finding the locus for this section.
We start with the following

Example 3 We recall the cardioid of = f (£) = 1 — cost has the implicit form ofz2 + y? + z)° —
—

r? —y? = 0. If AandB are two points on the cardioid and th_e)limﬁbB passes through the fixed point

I = (0,0). Find the locusM = (z,y) that satisfiesBM = sBA, wheres € (0,1). [The locus M is
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shown in red in Figure 5.] The interactive DGS file can be found at [S7].

7

A

Figure 5. Locus, cardioid and
the fixed point ato, 0)

We first remark that the following locus can indeed be derived by hand for those students who
are not afraid of tedious algebraic manipulations. Next we show how the DGS such as [3] can help
students visualize the interesting loci. Finally, we use the CAS such as [6] to show analytically that
both answers from [3] and[6] coincide with each other. We provide the interactive CAS file at [S6].

Step 1.We labelA = (f(t) cost, f(t) sin%ndBi(xl, y1) to be two points om = f(¢). Also

we label locusV/ as(z,y) and observe fronBA = sBA that

[x—m} _ S{ﬂﬂwﬂ—m{

Y= f(t)sint —y
r | B T f(t)cost
MR b ©
Step 2. Since AB passes through the fixed pointat the origin we write the line of AB as

Yy =mz.
We shall see the need of knowing the implicit equation, when finding the locus for this problem, in
the following step:
Step 3.Now, we plugy = ma into the implicit equation of the cardioidy? + 42 + z)° — 22 —
y? = 0 and obtain the following:

(2® + m?s® + x)2 — 2 —mi? =

x? (m4x2 +om2z? + 2mPx — m? + 2% + Zx) =

If z = 0thenB = (0,0) which impliesB = I, the problem becomes a simple exercise to explore,
and we leave it to readers to verify.
If x # 0, then
2 (m* +2m* +1) + (2m* +2) z —m® = 0, (6)
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and we consider the discriminant of the quadratic equatian(fs) as follows:
D = (2m® +2) + 4 (m* + 2m? + 1) m® > 0.

—(2m+2) ; by Vieta's

SinceD > 0, the two rootsz} andz; from (6] should satisfyz} + 25 = ATIET D

Theorem. We write

. —(2m? +2)
— J(t t
1 (m*+2m?2 +1) J(#) cos
— (2tan?t + 2)
= — J(t t
(tant + 2tan?t + 1) J(t) cos
yi = (tant)a)

B — (2tan®t + 2)
= (tant) <(tan4t gy RRRACALL t)

Step 4. We write z by usingzj in (5)), in other words, we have — f(t)scost = 21 — sz
= z1 (1 — s), which implies the following:

x(s,t) = f(t)scost+xj(1— )

— (2tan®t + 2)
(tan*t + 2tan?t + 1)
— (2tan’®t + 2)
(tan*t + 2tan?t + 1)

= s(l—cost)cost—i—(l—s)(

— F(t) cos t)

= s(l—cost)cost—i—(l—s)(

— (1 — cost) cos t)
Step 5.We usey; to findy (5] In other words, we have
y(s,t) = sf(t)sint +y; (1—s)

— s(1—cost)sint+ (1 —s) (tant( — (2tan’t+2) )—f(t)cost))

(tan*t + 2tan?t + 1

— (2tan®*t + 2
= s(1 —cost)sint + (1 — s) (tant ((tan4(zf +a2ntan;Lt ju - (1 — cost) cos t))

Step 6. We remark that the output of the parametric equation for the locus from [3] is shown
below
X(s,t) = (—1+ 2s) cos(t) — cos(t)?
Y (s,t) = (=1 + 2s — cos(t)) sin(?) '

After usingsimplify command in([6], we see(s,t) = X(s,t) andy(s,t) = Y (s,t). We show
various screen shots of the locus obtained from the CAS Maple [6], which correspond to their respec-

10
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tive values below in Figures 6(a)-(d).

s=0. $=0.25000 $=0.50000 $=0.75000

2
1
—_
in
I
1
bt
in
1
o
i
1
™)
in
—
(=]
in

Figure 6(a) Maple plot Figure 6(b) Maple plot Figure 6(c) Maple plot Figure 6(d) Maple plot
with s =0 with s = 0.25 with s = 0.5 with s = 0.75

We explore another scenario as follows:

Example 4 We consider the polar equationof= 3 + 7sin 3t, ¢ € [0, 27|, which can be represented
(with the help of([3]) by the implicit equation ef925 + 28 — 4225y + 414242 + 42512 — 70243 —
32122yt + 6atyt — 1422y® + 4045 + 422y5 + 1497 + y® = 0. If the fixed point is at the origin and
the line AB passes through the fixed poiht Find the locusM = (X,Y) satisfyingﬂ)/[ = sﬂ,
wheres € (0,1) .

Figure 7. Graph of
r=3+Tsin3t,t € [0,2n]

We provide the CAS and DGS interactive files at [S6 and S7] respectively.

11
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Step 1. We setf(t) = 3 + 7sin 3t and labeld = (f(t) cost, f(t )smt) andB = (xl,yl) to be
two points on = f(¢). Also we label locus\/ as(z, y) and observe fronBM = sBA that

{x—ml] B {f(t cost—xl] 7)
Y= f(t)sint —y
x— f(t)scost = x1— s1y
= x1(1—39),
y— f(t)ssint = y1 — sy
= yi(1—s).
Step 2. Since AB passes through the fixed poihtat the origin we write the line ofAB as

Yy =mx.
We shall see the need of knowing the implicit equation, when finding the locus for this problem, in
the following step:
Step 3.Now, we plugy = ma into the implicit equation of the polar equatior= f(¢) and obtain
28 (2?m® + 42?m® + 14am” + 62°m* — 14am® + 40mS + 42?m? — 70xm3 — 321m* + 22 — 42zm +
414m? —9) =0
If z = 0thenB = (0,0) which impliesB = I, the problem becomes a simple exercise to explore,
and we leave it to readers to verify.
If x # 0, then

2 (m? 1) @ (14m (m? = 3) (m? +1)°) + (414m% - 321m* + 40m° — 9) = 0. (8)
We consider the discriminant of the quadratic equation(g) and use CAS[6] to simplify as follows:
D =36(m?+1)" > 0.
SinceD > 0, we note two roots:} andz? from (8)) satisfying

14 (tan®t — 3) tan t
(tan?t + 1)

* *

by Vieta’s Theorem. We write

14 (tan®¢ — 3) tant
r; = — (tan )2an — f(t) cost
(tan?t + 1)

y; = (tant)ax]
— (tan®) (_ 14 (tan®*t — 3) tan ¢ — F(t) cos t)

(tan2t + 1)
Step 4. We write z; by usingzj in (5). In other words, we have — f(t)scost = z7 — sa4
= z1 (1 — s), which implies the following:
z(s,t) = f(t)scost+ z7(1—s)
14 (tan?t — 3) tant
(tan2¢ + 1)

= s(3+ T7sin3t)cost + (1 — s) (— —(3+7sin3t)cost>

12
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Step 5.We usey; to findy (B)). In other words, we have
y(s,t) = sf(t)sint+y;(1—s)

= s(3+47sin3t)sint+ (1 —s) <(tant) (‘

14 (tan?t — 3) tant
(tan2¢ + 1)

— (34 7sin 3t) cos t))

We remark that the output of the parametric equation for the locus from [3] is shown to be iden-
tical, after usingsimplify command in[[6], with[z(s, t), y(s,t)]. We show various screen shots
of the locus obtained from the CAS Mapl€ [6], which corresponding to their respective yaue

Figures 8(a)-(d). Incidentally, we discovered a way of constructing a three-leaf rose along the process
of exploring locus in this case (see Figure 8(c)).

5=10.50000

10

-15 -10 -5 5 10 15

-0 -20

Figure 8(a). Locus Figure 8(b). Locus  Figure 8(c). Locus Figure 8(d). Locus when
whens = —2 whens =0 whens = 0.5 s = 1.3333
We invite readers to explore the following analogous scenario:

Exercise 5 We are given the following curve= sin t—sin 2t, ¢ € [0, 27|, which looks like a butterfly-
see Figure 9.

Figure 9. Graph ofr = sint — sin 2¢,t € [0, 27]

The corresponding implicit equation is givenas— 224y — 39:% + 3zty? — 42y + yt + 32yt —
2y° + % = 0. If the fixed point is at the origin and the lined 5 passes through the fixed poiht

Find the locusM = (X, Y) satisfyingBM = sBA, wheres € (0, 1) . The interactive CAS and DGS
files can be found at [S8] and [S9] respectively.

13
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We encourage readers to explore using the algebraic method mentioned in the preceding example
and verify that the parametric equation for the locus to be shown as follows:

2(2tant® + tant® + tant)
X(s,t) = (1- — f(t)cost
(s,8) = (1=9) ((3tant2+3tant4—l—tant6+1) J(#) cos

. 2(2tant® + tant® + tant)
Y(s,t) = sf(t)sint+ (1 —3s) <(tant) ((3tant2 T+ 3tan £+ tanf + 1) ;

wheref(t) = sint — sin 2¢, ¢ € [0, 27].
The following shows various screen shots for the corresponding ratio&igures 10(a)-(d) re-
spectively. More exploratory details can be found from [S10]

5=0.20833 5=0.41667 5= 0.50000

1.4 1.4 1.4
2 12

0 L0,

A

1
0]
¢ 6
0
0 2

ol -05 /4 0.5 1 o s 03 I -1 -0.5 —o 0.5 1 01 05 . 0.5 1
-0.2- -02

Figure 10(a). Locus wheirigure 10(b). Locus wherFigure 10(c). Locus whefigure 10(d). Locus when
s=0 s = 0.20833 s = 0.41667 s =0.5

Finally, we use the following example to caution the readers that the implicit form for a curve
might generate an extraneous solution in some cases.

Example 6 We consider the polar equationof= 2 —sin 2¢, which can be represented by the implicit
equation of8z3y + 8xy* — 12222 + 32%y* + 32ty? — 4a* + 25 — 4y* + 9% = 0 (with the help of
Geometry Expressions). If the fixed point at the origin and the linet B passes through the fixed
point /. Find the locusM = (X,Y) satisfyingW = sB—1)4, wheres € (0,1).

14
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It is easy to see that the implicit equation does include the poiftt,df butr = 2 — sin 2¢ does
not (see the curve of = 2 — sin 2¢ in Figure 11).

Figure 11. Plot of
r=2—sin2t

Furthermore, we observe from the curverof f(t) that it is symmetric tq0, 0). Therefore, ifAD
is a line passing through the fixed point at the origin, ahd= (f(¢) cost, f(t)sint), then B =
(—x1,—11) = (f(t) cost, f(t)sint). We follow the standard procedure to find the lodds= (x, y)
as follows:

Step 1.We label the locus/ as(X,Y'), and observe fronBM = sBA, wheres € (0,1), that

{X—xl} _ S[f(t)cost—:pl}

Y — f(t)sint —
X — f(t)scost = x1— sxy
= z1(l—ys),
Y — f(t)ssint = y — s
= y(l—ys).

Step 2. We write X by usingx;, which yields,z — f(t)scost = x; — sz; = 21 (1 —s). We
substitute this into the following:
X(s,t) = sf(t)cost+ x1(1—s)
= sf(t)cost — (f(t)cost) (1 —s)
Step 3.We usey; andY — f(t)ssint = y; — sy; = y1 (1 — s) tofindy.
Y(s,t) = sf(t)sint+y; (1 —5)
= sf(t)sint — (f(t)sint) (1 —s),

wheref(t) = 2 —sin 2¢,t € [0, 27]. It is not surprising to imagine that the locus will be of different
sizes (expansion or shrinking dependi)drom the original polar curve, which we encourage readers
to verify on their own by exploratory files in [S10 and S11].
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Remarks:

For the locus problemswe discussedn Examples3,4 and6, and Exercise5, we haveassumed
thattheimplicit equationfor a given closedcurveis known. Thiswill allow usto applythe Vieta’'s
Theoremto find the locus mentionedin the Main Problem. We invite readersto investigatehow
to categorizehose closed curves, in impli@quatiorforms, where algebraimethodby Vieta’s
Theoremwill work or will not work when finding the locus.

4 Conclusion

It is clearthattechnologicatools provide us with many crucial intuitions beforewe attemptto find
rigorousanalyticalsolutions. Herewe havegainedgeometricintuitions while usinga DGS suchas
[2] or [3]. In the meantimewe usea CAS suchas|[6], for verifying that our analyticalsolutions
areconsistenwith our initial intuitions. The complexitylevel of the problemswe posedvary from
the simpleto the difficult. Many of our solutionsare accessibldo readersvho haveknowledgein
parametricequations.In particular,authorbelievesthat the problemsmentionedin this papercan
be excellentprojectsfor professionatrainingsfor future mathteachersandstudentdrom university
levels.

Evolving technologicakools definitely havemademathematicfun andaccessiblen onehand,
but they alsoallow the explorationof more challengingandtheoreticalmathematics We hopethat
whenmathematicss mademoreaccessibléo studentsit is possiblemorestudentswill beinspiredto
investigateproblemsrangingfrom the simpleto the morechallenging.We do not expectthatexam-
orientedcurriculawill changen theshortterm. However,encouragin@greateinterestn mathemat-
icsfor studentsandin particularprovidingthemwith thetechnologicatoolsto solvechallengingand
intricateproblemsbeyondthereachof pencil-and-papers animportantstepfor cultivatingcreativity
and innovation.
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6 Supplementary Electronic Materials

[S1]|Maple worksheet for Example.
[[S2]] Geometry Expressions worksheet Example
[S3]| Geometry Expressions worksheet Exantle
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https://mathandtech.org/eJMT_Feb_2020/S1_Example1.mw
https://mathandtech.org/eJMT_Feb_2020/S2_Example1.gx
https://mathandtech.org/eJMT_Feb_2020/S3_Example2.gx
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[S4]| Maple worksheet for Example 3.

Geometry Expressions worksheet Example 3.

[[S6]] Maple worksheet for Example 4.

[S7] Geometry Expressions worksheet Example 4.

[S8] Maple worksheet for Exercise 5.

[S9] Geometry Expressions worksheet Exercise 5.

[S10] Maple worksheet for Example 6.
Geometry Expressions worksheet for Example 6.
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